In the year , two American physicists C.J Davisson and L.H Germer conducted an experiment to explain the wave nature of electrons. Description: Davisson and Germer’s experiment was in the support of de Broglie’s hypothesis. They demonstrated the diffraction of electron beam similar to. Davisson Germer experiment with observations, Co-relating Davisson Germer experiment and de Broglie are provided here. Learn more about it at BYJU’S.

Author: Akinoktilar Aragul
Country: Botswana
Language: English (Spanish)
Genre: Politics
Published (Last): 14 August 2014
Pages: 27
PDF File Size: 16.51 Mb
ePub File Size: 17.56 Mb
ISBN: 721-8-47620-409-4
Downloads: 44026
Price: Free* [*Free Regsitration Required]
Uploader: Yonos

The Davisson-Germer experiment demonstrated the wave nature of the electron, confirming the earlier hypothesis of deBroglie. Putting wave-particle duality on dvison firm experimental footing, it represented a major step forward in the development of quantum mechanics.

The Bragg law for diffraction had been applied to x-ray diffraction, but this was the first application to particle waves. Davisson and Germer designed and built a vacuum apparatus for wxperiment purpose of measuring the energies of electrons scattered from a metal surface.


Davisson-Germer Experiment

Electrons from a heated filament were accelerated by a voltage and allowed to strike the surface of nickel metal. The electron beam was directed at the nickel target, which could be rotated gwrmer observe angular dependence of the scattered electrons.

Their electron detector called a Faraday box was mounted on an arc so that it could be rotated to observe electrons at eexperiment angles. It was a great surprise to them to find that at certain angles there was a peak in the intensity of the scattered electron beam.

Gsrmer peak indicated wave behavior for the electrons, and could be interpreted by the Bragg law to give values for the lattice spacing in the nickel crystal.

The experimental data above, reproduced above Davisson’s article, shows repeated peaks of scattered electron intensity with increasing accelerating voltage. This data was collected at a fixed scattering angle. Using the Bragg law, the deBroglie wavelength expression, and the kinetic energy of the accelerated electrons gives the relationship.


Davisson–Germer experiment

For that lattice spacing and scattering angle, the relationship for wavelength as a function of voltage is empirically. Then what gives the second, dxvison and sixth peaks?

Perhaps they originate from a different set of planes in the crystal. Those peaks satisfy a sequence 2,3,4, suggesting that the first peak of that series would have been at 5. That corresponds to an electron wavelength of 0.

Davisson–Germer experiment – Wikipedia

I don’t expegiment if that makes sense. I need to look at the original article. Davisson-Germer Experiment Davisson, C. Index Great experiments of physics Reference Rohlf Ch 5.

Author: admin